Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2989, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582902

ABSTRACT

Despite the identification of driver mutations leading to the initiation of myeloproliferative neoplasms (MPNs), the molecular pathogenesis of MPNs remains incompletely understood. Here, we demonstrate that growth arrest and DNA damage inducible gamma (GADD45g) is expressed at significantly lower levels in patients with MPNs, and JAK2V617F mutation and histone deacetylation contribute to its reduced expression. Downregulation of GADD45g plays a tumor-promoting role in human MPN cells. Gadd45g insufficiency in the murine hematopoietic system alone leads to significantly enhanced growth and self-renewal capacity of myeloid-biased hematopoietic stem cells, and the development of phenotypes resembling MPNs. Mechanistically, the pathogenic role of GADD45g insufficiency is mediated through a cascade of activations of RAC2, PAK1 and PI3K-AKT signaling pathways. These data characterize GADD45g deficiency as a novel pathogenic factor in MPNs.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Animals , Humans , Mice , Janus Kinase 2/metabolism , Mutation , Myeloproliferative Disorders/pathology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/genetics
2.
Haematologica ; 109(1): 84-97, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37767575

ABSTRACT

Leukemia stem cells (LSC) are a rare population capable of limitless self-renewal and are responsible for the initiation, maintenance, and relapse of leukemia. Elucidation of the mechanisms underlying the regulation of LSC function could provide novel treatment strategies. Here, we show that TWIST1 is extremely highly expressed in the LSC of MLL-AF9+ acute myeloid leukemia (AML), and its upregulation is positively regulated by KDM4C in a H3K9me3 demethylation-dependent manner. We further demonstrate that TWIST1 is essential for the viability, dormancy, and self-renewal capacities of LSC, and that it promotes the initiation and maintenance of MLL-AF9-mediated AML. In addition, TWIST1 directly interacts and collaborates with HOXA9 in inducing AML in mice. Mechanistically, TWIST1 exerts its oncogenic function by activating the WNT5a/RAC1 axis. Collectively, our study uncovers a critical role of TWIST1 in LSC function and provides new mechanistic insights into the pathogenesis of MLL-AF9+ AML.


Subject(s)
Leukemia, Myeloid, Acute , Twist-Related Protein 1 , Mice , Animals , Twist-Related Protein 1/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Stem Cells , Myeloid-Lymphoid Leukemia Protein/genetics , Neoplastic Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...